References and Supporting Research

  1. Gonzalez-Fraguela ME, Cespedes EM, Arencibia R, et al. Indicators of oxidative stress and the effect of antioxidant treatment in patients with primary Parkinson disease. Rev Neurol. 1998 Jan;26(149):28-33.
  2. Parkinson’s Disease Foundation 2011; Heisters 2011
  3. Shadrina MI, Slominskii PA. Mitochondrial dysfunction and oxidative damages in the molecular pathology of Parkinson’s disease. Mol Biol (Mosk). 2008 Sep-Oct;42(5):809-19.
  4. Nussbaum, RL, Ellis, CE. Alzheimer’s disease and Parkinson’s disease. N Engl J Med 2003; 348: 1356-1364. April 3, 2003.
  6. Olanow CW. Deprenyl in the treatment of Parkinson’s disease: clinical effects and speculations on mechanism of action. J Neural Transm Suppl 1996;48: 75-84.
  7. Jenner P. Oxidative stress in Parkinson’s disease and other neurodegenerative disorders. Pathol Biol (Paris) 1996 Jan;44(1): 57-64.
  8. Chaturvedi RK, Beal MF. Mitochondrial approaches for neuroprotection. Ann N Y Acad Sci. 2008 Dec;1147:395-412.
  9. Chaturvedi RK, Beal MF. PPAR: a therapeutic target in Parkinson’s disease. J Neurochem. 2008 Jul;106(2):506-18.
  10. Zhang J, Perry G, Smith MA, et al. Parkinson’s disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons. Am J Pathol. 1999 May;154(5):1423-9.
  11. Martignoni E, Blandini F, Godi L, et al. Peripheral markers of oxidative stress in Parkinson’s disease. The role of L-DOPA. Free Radic Biol Med. 1999 Aug;27(3-4):428-37.
  12. Shadrina MI, Slominskii PA. Mitochondrial dysfunction and oxidative damages in the molecular pathology of Parkinson’s disease. Mol Biol (Mosk). 2008 Sep-Oct;42(5):809-19.
  13. Nicholls DG. Oxidative stress and energy crises in neuronal dysfunction. Ann N Y Acad Sci. 2008 Dec;1147:53-60.
  14. Beal MF. Mitochondria, oxidative damage, and inflammation in Parkinson’s disease. Ann N Y Acad Sci. 2003 Jun;991:120-31.
  15. Li R, Huang YG, Fang D, Le WD. (-)-Epigallocatechin gallate inhibits lipopolysaccharide-induced microglial activation and protects against inflammation-mediated dopaminergic neuronal injury. J Neurosci Res. 2004 Dec 1;78(5):723-31.
  16. Dutta G, Zhang P, Liu B. The lipopolysaccharide Parkinson’s disease animal model: mechanistic studies and drug discovery. Fundam Clin Pharmacol. Oct 2008 Oct;22(5):453-64.
  17. Zhou C, Huang Y, Przedborski S. Oxidative stress in Parkinson’s disease: a mechanism of pathogenic and therapeutic significance. Ann N Y Acad Sci. 2008 Dec;1147:93-104.
  18. Hirsch EC, Hunot S. Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol. 2009 Apr;8(4):382-97.
  19. Obeso JA, Rodriguez-Oroz MC, Goetz CG, et al. Missing pieces in the Parkinson’s disease puzzle. Nature Medicine. 2010 May:16; 653-661.
  20. Schapira AH, Schrag A. Parkinson disease: Parkinson disase and clinical subtypes and their implications. Nature Reviews Neurology. 2011 May:7; 247-248.
  21. Schapira AH. Mitochondria in the aetiology and pathogenesis of Parkinson’s disease. Lancet Neurol. 2008 Jan;7(1): 97-109.
  22. Zhu J, Chu CT. Mitochondrial dysfunction in Parkinson’s disease. J Alzheimers Dis. 2010; 20 Suppl 2:S325-34.
  23. Lin TK, Liou CW, Chen SD, et al. Mitochondrial dysfunction and biogenesis in the pathogenesis of Parkinson’s disease. Chang Gung Med J. 2009 Nov-Dec;32(6): 589-99.
  24. Van Humbeeck C, Cornelissen T, Hofkens H, et al. Parkin Interacts with Ambra1 to Induce Mitophagy. The Journal of Neuroscience. 2011 July;31(28): 10249-10261.
  25. Vanltallie TB. Parkinson disease: primacy of age as a risk factor for mitochondrial dysfunction. Metabolism. 2008 Oct: 57 Suppl 2: S50-S55.
  26. de Castro IP, Costa AC, Lam D, et al. Genetic analysis of mitochondrial protein misfolding in Drosophila melanogaster. Cell Death and Differentiation. 2012;19: 1308-1316.
  27. Miller RL, James-Kracke M, Sun GY, Sun AY. Oxidative and Inflammatory Pathways in Parkinson’s Disease. Neurochem Res. 2009;3: 55-65.
  28. Hinz, M, Stein A, Uncini T. Amino acid management of Parkinson’s disease: a case study. International J of Gen Med. 2011:4; 1-10.
  29. Barbeau A. L-Dopa therapy in Parkinson’s disease: A critical review of nine years’ experience. Can Med Assoc J. 1969;101(13): 59-68.
  30. Peaston M, Bis-Nchine J. Metabolic studies and clinical observations during L-Dopa treatment of Parkinson’s disease. BMJ. 1970;1: 400-403.
  31. Hinz M. Depression. In: Kohlstadt I, editor. Food and Nutrients in Disease Management. Baton Rouge, FL: CRC Press; 2009:465–481.
  32. Hinz M, Stein A, Uncini T. A pilot study differentiating recurrent major depression from bipolar disorder cycling on the depressive pole. Neuropsychiatr Dis Treat. 2010;6:741–747.
  33. Stein A, Hinz M, Uncini T. Amino acid responsive Crohn’s disease: a case study. Clinical & Experimental Gastroenterology. 2010;3:171–177.
  34. Karobath M, Diaz J Huttunen M. The effect of l-dopa on the concentrations of tryptophan, tyrosine, and serotonin in the rat brain. Eur J Pharmacol. 1971;14:393–396.
  35. Zhelyaskov D, Levitt M, Udenfriend S. Tryptophan derivatives as inhibitors of tyrosine hydroxylase in vivo and vitro. Mol Pharmacol. 1968;4:445–451.
  36. Garcia N, Berndt T, Tyce G, Knox F. Chronic oral L-DOPA increases dopamine and decreases serotonin excretions. Am J Physiol. 1999;277 (5 Pt 2):R1476–R1480.
  37. Ng K, Chase T, Colburn R, Kopin I. L-Dopa induced release of cerebral monoamines. Science. 1970;170:76–77.
  38. Borah A, Kochupurackal P, Mohanakumar P. Long-term l-dopa treatment causes indiscriminate increase in dopamine levels at the cost of serotonin synthesis in discrete brain regions of rats. Cell Mol Neurobiol. 2007;27:985–996.
  39. Soares-da-Silva P, Pinto-do-O P. Antagonistic actions of renal dopamine and 5-hydroxytryptamine: effects of amine precursors on the cell inward transfer and decarboxylation. Br J Pharmacol. 1996;117: 1187–1192.
  40. Wuerthele S, Moore K. Studies of the mechanisms of l-dopa induced depletion of 5-hydroxytryptamine in the mouse brain. Life Sci. 1977;20:1675–1680.
  41. Zeevalk G, Manzino L, Sonsalla PK, Bernard LP. Characterization of intracellular elevation of glutathione (GSH) with glutathione monoethyl ester and GSH in brain and neuronal cultures: Relevance to Parkinson’s disease. Exp Neurol. 2007;203:512–520.
  42. Ritvo E, Yuwiler A, Geller E. Effects of l -dopa in autism. J Autism Dev Disord. 1971;1(2).
  43. Benson R, Crowell B, Hill B. The effects of L-Dopa on the activity of methionine adenosyltransferase: Relevance to L-Dopa therapy and tolerance. Neurochemical Res.1993;18(3):325–330.
  44. Liu X, Wilson K, Charlton C. Effects of l-dopa treatment on methylation in mouse brain: Implications for side effects of l-dopa. Life Sci. 2000;66(23):2277–2288.
  45. Fuller R, Hemrick-Luecke S, Perry K. Effects of l-dopa on epinephrine concentration in rat brain: Possible role of inhibition of norepinephrine N-methyl transferase by S-adenosyl homocysteine. J Pharmacol Exp Ther. 1982;223(1):84–89.
  46. Menza M, Marin H, Kaufman K. Citalopram treatment of depression in Parkinson’s disease: The impact on anxiety, disability, and cognition. J Neuropsychiatry Clin Neurosci. 2004;16(3):315–319.
  47. Hinz M, Stein A, Cole T. The Parkinson’s disease death rate: carbidopa and vitamin B6. Clinical Pharmacology: Advances and Applications. 2014:6; 161-169.
  48. Daidone F, Montioli R, Paiardini A, et al. Identification by virtual screening and in vitro testing of human DOPA decarboxylase inhibitors. PLoS One. 2012;7(2):e31610.
  49. UniProt [webpage on the Internet]. UniProt Consortium; 2014. Available from: Accessed July 4, 2014.
  50. Hinz M, Stein A, Uncini T. Amino acid management of Parkinson’s disease: a case study. Int J Gen Med. 2011;4:165–174.
  51. Hinz M, Stein A, Uncini T. Relative nutritional deficiencies associated with centrally acting monoamines. Int J Gen Med. 2012;5:413–430.
  52. Hinz M, Stein A, Uncini T. A pilot study differentiating recurrent major depression from bipolar disorder cycling on the depressive pole. Neuropsychiatr Dis Treat. 2010;6:741–747.
  53. Zhelyaskov DK, Levitt M, Udenfriend S. Tryptophan derivatives as inhibitors of tyrosine hydroxylase in vivo and in vitro. Mol Pharmacol. 1968;4(5):445–451.
  54. Bertoldi M. Mammalian Dopa decarboxylase: structure, catalytic activity and inhibition. Arch Biochem Biophys. 2014;546:1–7.
  55. Wu F, Christen P, Gehring H. A novel approach to inhibit intracellular vitamin B6-dependent enzymes: proof of principle with human and plasmodium ornithine decarboxylase and human histidine decarboxylase. FASEB J. 2011;25(7):2109–2122.
  56. Cellini B, Montioli R, Oppici E, Voltattorni CB. Biochemical and computational approaches to improve the clinical treatment of dopa decarboxylase-related diseases: an overview. Open Biochem J. 2012;6:131–138.
  57. Bartlett MG. Biochemistry of the water soluble vitamins: a lecture for first year pharmacy students. Am J Pharm Educ. 2003; 67(2):Article 64.
  58. Palfreyman MG, Danzin C, Bey P, et al. Alpha-difluoromethyl DOPA, a new enzyme-activated irreversible inhibitor of aromatic L-amino acid decarboxylase. J Neurochem. 1978;31(4):927–932.
  59. Jansen MC, Bueno-de-Mesquita HB, Buzina R, et al. Dietary fiber and plant foods in relation to colorectal cancer mortality: the Seven Countries Study. Int J Cancer. 1999;81(2):174–179.
  60. Robinson K, Arheart K, Refsum H, et al. Low circulating folate and vitamin B6 concentrations: risk factors for stroke, peripheral vascular disease, and coronary artery disease. European COMAC Group. Circulation. 1998;97(5):437–443.
  61. Cui R, Iso H, Date C, Kikuchi S, Tamakoshi A; Japan Collaborative Cohort Study Group. Dietary folate and vitamin b6 and B12 intake in relation to mortality from cardiovascular diseases: Japan collaborative cohort study. Stroke. 2010;41(6):1285–1289.
  62. Medrano MJ, Sierra MJ, Almazán J, Olalla MT, López-Abente G. The association of dietary folate, B6, and B12 with cardiovascular mortality in Spain: an ecological analysis. Am J Public Health. 2000;90(10):1636–1638.
  63. Schnyder G, Roffi M, Flammer Y, Pin R, Hess OM. Effect of homocysteine-lowering therapy with folic acid, vitamin B12, and vitamin B6 on clinical outcome after percutaneous coronary intervention: the Swiss Heart study: a randomized controlled trial. JAMA. 2002;288(8):973–979.
  64. Nygård O, Nordrehaug JE, Refsum H, Ueland PM, Farstad M, Vollset SE. Plasma homocysteine levels and mortality in patients with coronary artery disease. N Engl J Med. 1997;337(4):230–236.
  65. Di Salvo ML, Budisa N, Constestabile R. PLP-dependent enzymes: A Powerful tool for metabolic synthesis of non-canonical amino acids. Beilstein Bozen Symposium on Molecular Engineering and Control. May 14-18, 2012. Prien, Germany.
  66. Mizuno Y, Kondo T, Kuno S, et al. Early addition of selegiline to L-DOPA treatment is beneficial for patients with Parkinson disease. Clin Neuropharmacol. 2010 Jan-Feb;33(1): 1-4.
  67. Deep brain stimulation for Parkinson’s disease. National Institute of Neurological Disorders and Stroke. Accessed Oct. 13, 2012.
  68. Brunicardi FC, ed., et al. Schwartz’s Principles of Surgery. 9th ed. New York, N.Y.: The McGraw-Hill Companies; 2010. Accessed Oct. 11, 2012.
  69. Bronstein JM, et al. Deep brain stimulation for Parkinson disease. Archives of Neurology. 2011;68:165.
  70. Deep brain stimulation. American Association of Neurological Surgeons. Accessed Oct. 13, 2012.
  71. Klassen BT (expert opinion). Mayo Clinic, Rochester, Minn. Dec. 13, 2012
  72. Ramaker, Claudia; Marinus, Johan, Stiggelbout, Anne Margarethe, van Hilten, Bob Johannes (1 September 2002). “Systematic evaluation of rating scales for impairment and disability in Parkinson’s disease”. Movement Disorders 17 (5): 867–876.
  73. Butt MS, Sultan MT. Coffee and its consumption: benefits and risks. Crit Rev Food Sci Nutr. 2011 Apr;51(4): 363-73.
  74. Hu G, Bidel S, Jousilahti P, et al. Coffee and tea consumption and the risk of Parkinson’s disease. Mov Disord. 2007 Nov 15;22(15): 2242-8.
  75. Simon DK, Swearingen CJ, Hauser RA, et al. Caffeine and Progression of Parkinson’s disease. Clin Neuropharmacol. 2008 Jul-Aug; 31(4): 189-196.
  76. Allen NE, Sherrington C, Paul SS, Canning CG. Balance and falls in Parkinson’s disease: a meta-analysis of the effect of exercise and motor training. Mov Disord. 2011 Aug 1;26(9): 1605-15.
  77. Lau YS, Patki G, Das-Panja K, et al. Neuroprotective effects and mechanisms of exercise in a chronic mouse model of Parkinson’s disease with moderate neurodegeneration. Eur J Neurosci. 2011 Apr;33(7): 1264-74.
  78. Dobkin RD, Menza M, Allen LA, et al. Cognitive-behavioral therapy for depression in Parkinson’s disease: a randomized controlled trial. Am J Psychiatry. 2011 Oct;168(10): 1066-74.
  79. Vaughan CP, Juncos JL, Burgio KL. Behavioral therapy to treat urinary incontinence in Parkinson disease. Neurology. 2011 May 10;76(19): 163-4.
  80. Bottiglieri T, Hyland K, Reynolds EH. The clinical potential of ademetionine (S-adenosylmethionine) in neurological disorders. Drugs. 1994 Aug;48(2):137-52.
  81. Martignoni E, Tassorelli C, Nappi G, Zangaglia R, Pacchetti C, Blandini F. Homocysteine and Parkinson’s disease: a dangerous liaison? J Neurol Sci. 2007 Jun 15;257(1-2):31-7.
  82. Obeid R, McCaddon A, Herrmann W. The role of hyperhomocysteinemia and B-vitamin deficiency in neurological and psychiatric diseases. Clin Chem Lab Med. 2007;45(12):1590-606.
  83. Tan EK, Cheah SY, Fook-Chong S, et al. Functional COMT variant predicts response to high dose pyridoxine in Parkinson’s disease. Am J Med Genet B Neuropsychiatr Genet. 2005 Aug 5;137B(1):1-4.
  84. Postuma RB, Espay AJ, Zadikoff C, et al. Vitamins and entacapone in levodopa-induced hyperhomocysteinemia: a randomized controlled study. Neurology. 2006 Jun 27;66(12):1941-3.
  85. Amadasi A, Bertoldi M, Contestabile R, et al. Pyridoxal 5’-phosphate enzymes as targets for therapeutic agents. Curr Med Chem. 2007;14(12):1291-324.
  86. Zoccolella S, Iliceto G, deMari M, Livrea P, Lamberti P. Management of L-Dopa related hyperhomocysteinemia: catechol-O-methyltransferase (COMT) inhibitors or B vitamins? Results from a review. Clin Chem Lab Med. 2007;45(12):1607-13.
  87. Qureshi GA, Qureshi AA, Devrajani BR, Chippa MA, Syed SA. Is the deficiency of vitamin B12 related to oxidative stress and neurotoxicity in Parkinson’s patients? CNS Neurol Disord Drug Targets. 2008 Feb;7(1):20-7.
  88. Muller T. Role of homocysteine in the treatment of Parkinson’s disease. Expert Rev Neurother. 2008 Jun;8(6):957-67.
  89. Dos Santos EF, Busanello EN, Miglioranza A, et al. Evidence that folic acid deficiency is a major determinant of hyperhomocysteinemia in Parkinson s disease. Metab Brain Dis. 2009 Jun;24(2):257-69.
  90. Hinz M, Stein A, Cole T. Parkinson’s disease: carbidopa, nausea and dyskinesia. Clinical Pharmacology: Advances and Applications. 2014;6: 189-194.
  91. Mischley LK, Allen, J, Bradley R. Coeznyme Q10 deficiency in patients with Parkinson’s disease. J Neurol Sci. 2012 Apr 27. Epub ahead of print.
  92. Hargreaves IP, Lane A, Sleiman PM. The coenzyme Q10 status of the brain regions of Parkinson’s disease patients. Neurosci Lett. 2008 Dec 5;447(1):17-9.
  93. Albano CB, Muralikrishnan D, Ebadi M. Distribution of coenzyme Q homologues in brain. Neurochem Res. 2002 May;27(5): 359-68.
  94. Shults CW, Oakes D, Kieburtz K, et al. Effects of coenzyme Q10 in early Parkinson disease: evidence of slowing of the functional decline. Arch Neurol. 2002 Oct;59(10): 1541-50.
  95. Shults CW, Flint Beal M, Song D, Fontaine D. Pilot trial of high dosages of coenzyme Q10 in patients with Parkinson’s disease. Exp Neurol. 2004 Aug;188(2): 491-4.
  96. Yang L, Calingasan NY, Willle EJ, et al. Combination therapy with coenzyme Q10 and creatine produces additive neuroprotective effects in models of Parkinson’s and Huntington’s diseases. J Neurochem. 2009 Jun;109(5): 1427-39.
  97. Evatt ML, Delong MR, Khazai N, et al. Prevalence of vitamin D insufficiency in patients with Parkinson disease and Alzheimer disease. Arch Neurol. 2008 Oct;65(0): 1348-52.
  98. Evatt ML, Delong MR, Kumari M, et al. High prevalence of hypovitaminosis D status in patients with early Parkinson disease. Arch Neurol. 2011 Mar;68(3): 314-9.
  99. Wyss M, Schulze A. Health implications of creatine: can oral creatine supplementation protect against neurological and atherosclerotic disease? Neuroscience. 2002;112(2):243-60.
  100. Beal MF. Bioenergetic approaches for neuroprotection in Parkinson’s disease. Ann Neurol. 2003;53 Suppl 3:S39-47; discussion S47-38.
  101. Fernandez-Espejo E. Pathogenesis of Parkinson’s disease: prospects of neuroprotective and restorative therapies. Mol Neurobiol. 2004 Feb;29(1):15-30.
  102. Schapira AH. Progress in neuroprotection in Parkinson’s disease. Eur J Neurol. 2008 Apr;15 Suppl 1:5-13.
  103. NINDS NET-PD Investigators. A randomized, double-blind, futility clinical trial of creatine and minocycline in early Parkinson disease. Neurology. 2006 Mar 14;66(5):664-71.
  104. NINDS NET-PD Investigators A pilot clinical trial of creatine and minocycline in early Parkinson disease: 18-month results. Clin Neuropharmacol. 2008 May-Jun;31(3):141-50.
  105. Yang L, Calingasan NY, Wille EJ, et al. Combination therapy with coenzyme Q10 and creatine produces additive neuroprotective effects in models of Parkinson’s and Huntington’s diseases. J Neurochem. 2009 Jun;109(5):1427-39.
  106. Murakami K, Miyake Y, Sasaki S, et al. Dietary intake of folate, vitamin B6, vitamin B12 and riboflavin and risk of Parkinson’s disease: a case-control study in Japan. Br J Nutr. 2010 Mar 26:1-8.
  107. Youdim KA, Martin A, Joseph JA. Essential fatty acids and the brain: possible health implications. Int J Dev Neurosci. 2000 Jul-Aug;18(4-5):383-99.
  108. Montine KS, Quinn JF, Zhang J, et al. Isoprostanes and related products of lipid peroxidation in neurodegenerative diseases. Chem Phys Lipids. 2004 Mar;128(1-2):117-24.
  109. Wu Y, Tada M, Takahata K, Tomizawa K, Matsui H. Inhibitory effect of polyunsaturated fatty acids on apoptosis induced by etoposide, okadaic acid and AraC in Neuro2a cells. Acta Med Okayama. 2007 Jun;61(3):147-52.
  110. Bousquet M, Saint-Pierre M, Julien C, Salem N, Jr., Cicchetti F, Calon F. Beneficial effects of dietary omega-3 polyunsaturated fatty acid on toxin-induced neuronal degeneration in an animal model of Parkinson’s disease. FASEB J. 2008 Apr;22(4):1213-25.
  111. Samadi P, Gregoire L, Rouillard C, Bedard PJ, Di Paolo T, Levesque D. Docosahexaenoic acid reduces levodopa-induced dyskinesias in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine monkeys. Ann Neurol. 2006 Feb;59(2):282-8.
  112. Whelan J. (n-6) and (n-3) Polyunsaturated fatty acids and the aging brain: food for thought. J Nutr. 2008 Dec;138(12):2521-2.
  113. Evatt ML, Delong MR, Khazai N, Rosen A, Triche S, Tangpricha V. Prevalence of vitamin d insufficiency in patients with Parkinson disease and Alzheimer disease. Arch Neurol. 2008 Oct;65(10):1348-52.
  114. Newmark HL, Newmark J. Vitamin D and Parkinson’s disease–a hypothesis. Mov Disord. 2007 Mar 15;22(4):461-8.
  115. Sanchez B, Relova JL, Gallego R, Ben-Batalla I, Perez-Fernandez R. 1,25-Dihydroxyvitamin D3 administration to 6-hydroxydopamine-lesioned rats increases glial cell line-derived neurotrophic factor and partially restores tyrosine hydroxylase expression in substantia nigra and striatum. J Neurosci Res. 2009 Feb 15;87(3):723-32.
  116. Sato Y, Honda Y, Iwamoto J. Risedronate and ergocalciferol prevent hip fracture in elderly men with Parkinson disease. Neurology. 2007 Mar 20;68(12):911-915.
  117. Sato Y, Iwamoto J, Kanoko T, Satoh K. Alendronate and vitamin D2 for prevention of hip fracture in Parkinson’s disease: a randomized controlled trial. Mov Disord. 2006 Jul;21(7):924-9.
  118. Smith MP, Fletcher-Turner A, Yurek DM, Cass WA. Calcitriol protection against dopamine loss induced by intracerebroventricular administration of 6-hydroxydopamine. Neurochem Res. 2006 Apr;31(4):533-9.
  119. Weinreb O, Mandel S, Amit T, Youdim MB. Neurological mechanisms of green tea polyphenols in Alzheimer’s and Parkinson’s diseases. J Nutr Biochem. 2004 Sep;15(9):506-16.
  120. Levites Y, Weinreb O, Maor G, Youdim MB, Mandel S. Green tea polyphenol (-)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration. J Neurochem. 2001 Sep;78(5):1073-82.
  121. Pan T, Jankovic J, Le W. Potential therapeutic properties of green tea polyphenols in Parkinson’s disease. Drugs Aging. 2003;20(10):711-21.
  122. Levites Y, Amit T, Youdim MB, Mandel S. Involvement of protein kinase C activation and cell survival/ cell cycle genes in green tea polyphenol (-)-epigallocatechin 3-gallate neuroprotective action. J Biol Chem. 2002 Aug 23;277(34):30574-80.
  123. Choi JY, Park CS, Kim DJ, et al. Prevention of nitric oxide-mediated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease in mice by tea phenolic epigallocatechin 3-gallate. Neurotoxicology. 2002 Sep;23(3):367-74.
  124. Nie G, Cao Y, Zhao B. Protective effects of green tea polyphenols and their major component, (-)-epigallocatechin-3-gallate (EGCG), on 6-hydroxydopamine-induced apoptosis in PC12 cells. Redox Rep. 2002;7(3):171-7.
  125. Mandel S, Maor G, Youdim MB. Iron and alpha-synuclein in the substantia nigra of MPTP-treated mice: effect of neuroprotective drugs R-apomorphine and green tea polyphenol (-)-epigallocatechin-3-gallate. J Mol Neurosci. 2004;24(3):401-16.
  126. Guo S, Bezard E, Zhao B. Protective effect of green tea polyphenols on the SH-SY5Y cells against 6-OHDA induced apoptosis through ROS-NO pathway. Free Radic Biol Med. 2005 Sep 1;39(5):682-95.
  127. Guo S, Yan J, Yang T, Yang X, Bezard E, Zhao B. Protective effects of green tea polyphenols in the 6-OHDA rat model of Parkinson’s disease through inhibition of ROS-NO pathway. Biol Psychiatry. 2007 Dec 15;62(12):1353-62.
  128. Levites Y, Youdim MB, Maor G, Mandel S. Attenuation of 6-hydroxydopamine (6-OHDA)-induced nuclear factor-kappaB (NF-kappaB) activation and cell death by tea extracts in neuronal cultures. Biochem Pharmacol. 2002 Jan 1;63(1):21-9.
  129. Yamada T, Terashima T, Kawano S, et al. Theanine, gamma-glutamylethylamide, a unique amino acid in tea leaves, modulates neurotransmitter concentrations in the brain striatum interstitium in conscious rats. Amino Acids. 2009 Jan;36(1):21-7.
  130. Cho HS, Kim S, Lee SY, Park JA, Kim SJ, Chun HS. Protective effect of the green tea component, L-theanine on environmental toxins-induced neuronal cell death. Neurotoxicology. 2008 Jul;29(4):656-62.
  131. Li R, Huang YG, Fang D, Le WD. (-)-Epigallocatechin gallate inhibits lipopolysaccharide-induced microglial activation and protects against inflammation-mediated dopaminergic neuronal injury. J Neurosci Res. 2004 Dec 1;78(5):723-31.